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Chapter 1: Abstracts

1.1. Abstract

In this work the thermal convection phenomena, which occur in the two-
dimensional thin layer of fluid of infinite length. The layer is heated from below and
simultaneously cooled at the top as a result the particles of the fluid begin to move
creating convectional rolls. These phenomena are known as Rayleigh-Bénard
convection. This problem is fully described by the couple of partial differential
equations i.e. the Navier-Stokes equation and the thermal diffusion equation. These
equations were transformed into the system of three ordinary differential equations
well-known as the Lorenz model. This model is very useful in studying the chaotic
behaviour of the fluid which occurs in described phenomena. The Lorenz model was
used to carry out the computer simulation of convection showing the fluid behaviour
with respect to different parameters. The results were compared with the simulation
form the fluid dynamics program. Because of the fact that numerical calculation is
never precise there was the analysis made which shows how the accuracy of
calculation changes the result. Finally the pattern formation in convective fluid is
described. This behaviour is characteristic for self-organized systems which manifest

the ordered structure in the state far from equilibrium.
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1.2. Polish abstract (streszczenie)

W pracy zaprezentowane zostato zjawisko konwekcji cieplnej zachodzacej w
cienkiej dwuwymiarowej warstwie ptynu, o nieskonczonej dtugosci. Warstwa ta jest
podgrzewana od dotu i jednocze$nie chtodzona od gory, w efekcie czasteczki ptynu
zaczynajg sie poruszacé tworzac tzw. rolki konwekcyjne. Zjawisko to powszechnie
znane jest jako konwekcja Rayleigha-Bénarda. Uktad Opisany jest przy uzyciu
czastkowych réwnan rozniczkowych: rownania Naviera-Stokesa oraz rownanie
przewodnictwa ciepta. Przeksztalcenie tych réwnan oraz dzieki zastosowanie
rozwiniecia w szereg Fouriera przy pewnych zatozeniach prowadzi do modelu
opisanego za pomocg trzech zwyczajnych réwnan rdzniczkowych znanych
powszechnie jako uktad Lorenza. Uklad ten umozliwia analize chaotycznego
zachowania ptynu, jakie zachodzi w omawianym zjawisku. Model Lorenza zostat
wykorzystany do przeprowadzenia symulacji komputerowej konwekcji prezentujacej
zachowanie sie ptynu dla roznych parametrow. Wyniki poréwnano z symulacjg
konwekcji otrzymang z programu stuzacego do analizy dynamiki ptynéw. Poniewaz
obliczenia numeryczne obarczone sg zawsze btedem zwigzanym z zastosowang
metodg obliczen przedstawiony rowniez zostal wplyw, jaki ma precyzja
wykonywanych obliczen na uzyskane wyniki. Ponadto przedstawione zostato
zjawisko tworzenia sie regularnego wzoru, ktére towarzyszy konwekcji Rayleigha-
Bénarda. Takie  zachowanie  charakterystyczne jest dla  systemow
samoorganizujacych sie, ktore zachowujg sie w sposob uporzadkowany bedac w

stanie dalekim od rownowagi.
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Chapter 2: Introduction

2.1. Rayleigh-Bénard Convection

The Rayleigh-Bénard convection is a problem which has been studied for
over a century and it's still a very interesting problem for many researchers all over
the world, and it's used e.g. in astrophysics, geophysics, and atmospheric
sciences [8]. This theory is very useful in describing weather phenomena and
long-term climatic effects [11]; consequently there are many applications which are
based on this theory, such as Solar Energy systems (e.g. Power Tower) [10], energy
storage and material processing. Not only for its practical significance is this problem
so important, but also for purely theoretical reasons as well. The Rayleigh-Bénard
convection model is an infinite, thin layer of fluid (practically a very long). The fluid is
heated from below while the top one stays colder. The temperature gradient is
crucial for the problem: if it's below a certain value, the fluid stays stable despite its
natural tendency to move because of its viscosity and thermal diffusivity. On the
other hand, when the temperature gradient is over the critical value thermal
instability occurs. The men who first considered the problem at the beginning of 20"
century were Rayleigh and Bénard, the former provided some theoretical basis for
the convection phenomena, while the latter executed some experiments in order to
demonstrate the onset of thermal instability. The phenomena of thermal convection
were called the Rayleigh-Bénard convection in their honour. However, there is a
difference between their attitudes to the problem. Bénard's researches concerned
the instability caused by the temperature dependence of the surface-tension
coefficient whereas Rayleigh was interested in the convection which occurs and
arises as a result of temperature and density nonuniformity. At present, the
mechanism studied by Rayleigh is called the Rayleigh-Bénard convection while

thermocapillary convection is called Bénard-Marangoni convection.
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The mathematical model of this problem is set of non-linear coupled partial
differential equations and the solution of this set is degenerate and non-unique [2].
This model is an example of a non-linear system and it can provide an insight into
nonlinear phenomena studies. Another property of the Rayleigh-Bénard system is its
time dependence, which seems to be one of the most important aspects of transition
from laminar to turbulent flow [6]. It is believed that the Rayleigh-Bénard system is a
very important part of low-dimensional and spatiotemporal chaos theories and, what
IS more, it's also a canonical example of a continuous system which is able to
generate and sustain spatiotemporal chaos [4]. The system is also an example of
self-organization (a pattern forming system) which makes it the most carefully
studied system of this kind. Particularly synergetic specialists are interested in this
system because it's possible to observe some essential features for nonlinear
pattern-forming process [9]. Such formations of patterns occur in crystal growth,
solidification fronts' propagation instabilities of nematic liquid crystal, buckling of thin
plates and shells, etc. It's also possible to observe them in sand ripples on beaches
and desert; in geological formations, in interacting laser beams, and instabilities of

numerical algorithms.
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2.2. Objective and layout

The main objective of this work is to create a simplified model of Rayleigh-
Bénard convection using the famous Lorenz differential equations system i.e.
Mathematica. Having this model done it will be simulated using symbolic algebra
system. The simulation will be connected with the discussion of the results. Finally
another computer simulation will be done using fluid dynamics software and the
result of this simulation will be compared with the previous one.

Firstly the geometry of the Rayleigh-Bénard convection model is presented in
the third chapter, also the transition from thermal conduction to convection is shown.
The next chapter is the introduction of the dimensionless constant i.e. the Rayleigh
number which is an essential parameter of the description of considered model. The
fifth chapter contains the full formal description of convection. Standard equations of
fluid mechanics and thermal energy diffusion are transformed to the well-known
Lorenz model of convection. The chapter number six is the presentation of the
computer simulation of the convection. Both Lorenz model of convection, and the
CFD software results are shown. In addition to this, small discussion about
numerical precision is carried out. The next chapter is the description of the pattern
formation phenomenon and the Rayleigh-Bénard convection is presented as an
example of the self-organized system. Finally some conclusions are given in the
ninth chapter. At the end of the work there are two appendix, where the former is the

table of standard fluid properties while the latter is the listing of the program code.
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Chapter 3: Description of the geometry in Rayleigh-Bénard model

The Geometry of the Rayleigh-Bénard model is presented below:
Tc

z h 5T=Tw-Tc

Tw
Fig. 3.1: The fluid layer model.

The model is a very long narrow fluid layer. There are fixed temperatures at

the top T. and at the bottom T, and the temperature at the bottom is higher so
T, >T,. The difference of the temperature is expressed by the term JT =T, —T, and

this is one of the control parameters of the system. Convection appears when the
temperature gradient is big enough, consequently a small packet of fluid starts to
move up into the colder region of higher density. If the buoyant force caused by
difference of density is big enough, then the pocket moves upward so fast that the
temperature cannot drop and the convective flow appears. There is also possible
that the buoyant force is not strong enough, in such a situation the temperature of
the pocket is able to drop before it can move up too much, and as a result fluid stays

stable.

&

/11111111 Vo EoRel

Fig. 3.2: Transition from thermal conduction to convective rolls in infinite two-

dimensional fluid layer.
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Chapter 4: The Rayleigh number

Using information about thermal energy diffusion and viscous forces in fluid
one can study the stability of the fluid [1]. First of all a small pocket of fluid is taken. It

moves upward by a small distance Az so the surrounding temperature is lower by:
or
AT :(TAZ). (4.1)

From the thermal energy diffusion equation one can obtain that the rate of change of

temperature is equal to the thermal diffusion coefficient D; multiplied by the

Laplacian of the temperature function. If the displacement is small enough the
Laplacian may be approximated by:

ol Az
0T = ——=—. 4.2
h2 h ( )

Now the thermal relaxation time &; will be defined such that:

ch;—I:AT = &, D, 0°T, (4.3)

where the second equality follows from the thermal diffusion equation.

Using Laplacian approximation it's obtained that &; is:

A =—. (4.4)
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The next problem is the effect of the buoyant force on the pocket of fluid
which is proportional to the density different between the pocket and its
surroundings. On the other hand the density difference is proportional to the thermal
expansion coefficient aand the temperature difference AT . Consequently the

buoyant force may be calculated as:

F =ap,0AT =ap,9 %AT , (4.5)

where: p, - the original fluid density; g - strength of the local gravitational field.

Assuming that buoyant force balances the fluid viscous force the pocket
moves with the constant velocity v, .Hence the displacement through a distance Az

takes for the pocket a time:
I, =—. (4.6)

As the viscous force is equal to the viscosity of the fluid multiplied by the

Laplacian of the velocity, the viscous force may be approximated as follows:

UZ
F, = u0%v, = Hos (4.7)

Now, by equating buoyant and viscous force one can obtain the v, expression:

U :MAZ’

2 1 (4.8)

10
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and the displacement time:

- M
ap,ghaT

Iy

(4.9)

If the thermal diffusion time is less than the corresponding displacement time
the convection does not appear but if the thermal diffusion time is longer then the
fluid pocket will continue to feel an upward force and the convection will continue.
The factor which contains the ratio of the thermal diffusion time to the displacement

time is the Rayleigh number R and it takes form:

R = ap,gh®ar .

4.10
D, i (4.10)

The Rayleigh number is the critical parameter for the Rayleigh- Bénard convection.

11
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Chapter 5: Governing equations

There are several methods which could be used to derive the Lorenz
equations system, one of them is presented below [5]. The Navier-Stokes equation
for fluid flow and thermal energy diffusion equation are used. This problem, like
many others, has no exact analytical solution, so approximation methods will be
used in order to create a possibly reliable theoretical model. The Lorenz equations
system is one of the most famous models in the domain of nonlinear dynamics i.e. it
can be applied to describe the motion of the fluid under conditions of Rayleigh-

Bénard flow which have been already presented.

As a result of the assumed two-dimensional geometry, only vertical and
horizontal velocity components are considered. The form of Navier-Stokes equations
for this case is as follows:

pauz + p0 (grad v, = -pg _%® + p0%v,
ot 0z

: (5.1)

P 9, 4 pU [grad v, = P, /iy
ot 0X

where: p- mass density of the fluid; g- strength of the local gravitational field; p -

fluid pressure; U - fluid viscosity

The next step is to describe the temperature T. It's done using thermal
diffusion equation in the form:
%—I+DﬂgradT =D, 0°T, (5.2)

where D, - thermal diffusion coefficient.

12
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If the fluid stays stable (there are no convectional phenomena) the temperature
changes linearly in accordance with the height (from the bottom to the top):

T(x,z,t) =T, —ﬁo‘r. (5.3)

More important is how the temperature changes when the convection
appears so that the relation is not linear anymore. The function which describes

temperature deviation from linear is 6(x,z,t):
B(x,z,t) =T (x,2,t) - T, +%a‘r . (5.4)
This function satisfies the following equation:
or

%H?Egrad 6-u,~-=D1%. (5.5)

Fluid convection is the result of fluid density variation which depends directly
on the temperature. The higher the temperature, the density decreases, so a
buoyant force appears causing the convection phenomena. The fluid density

variation can be described in terms of a power series expansion:
_ 0p
A(T) = p +6—T(F “Ty)t., (5.6)

where p,is the fluid density evaluated at T,

13
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This equation can be presented in another form by introducing the thermal
coefficient:

po OT (5.7)

Furthermore the expression (T —-T,) in (eq. 6.4) is used thus the equation of the

density is as follows:
z
P(T) = P —apo[—FOT +6(x,z,t)]. (5.8)

There are a few terms of The Navier-Stokes equation in which density p
occurs, however according to Boussinesq approximation the density variation in may
be ignored all terms except the one that involves gravity force [3]. The v,equation

in (eq. 6.1) may be now written by applying this approximation in the following form:

Po aait + po0 [grad v, =-p,g - agp, ﬁd _% +agpd(x.z )+ p’u,.  (5.9)

If the fluid is stable the first three terms on the right-hand side must add to 0, then an

effective pressure gradient is introduced. This gradient is equal to O if the fluid is not

in motion:
, z? or
|O=p+,0092+a’g,00?T
) 5.10
%:a_p+pg+a’gp 50‘" ( )
9z oz ° °h

14
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Now the effective pressure gradient is applied to the Navier-Stokes equations which
are simultaneously divided through by p,:

0: o [grad v, = S Loy ady +v0%v,

ot P, 0z

v 1 ap' ! (.11)
X +ggradou, = - vO?u,

ot P, OX

where v = £ - kinematic viscosity
Po

15
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5.1. Introducing dimensionless variables

Now some dimensionless variables will be introduced in order to make the
system much easier to study. This procedure is very important for seeing which
combination of parameters is more important that the others.

The new dimensionless time variable t' is introduced:
D

t'=h—;t : (5.12)

where the expression % Is a typical thermal diffusion time over the distanceh.

Distance variables x', z':

X
X :F
g (5.13)
z'=—
h
Temperature variable 6':
6
g=—. 5.14
> (5.14)

Having these variables defined, it's also possible to introduce a dimensionless

velocity:
v '-%—&u
S TOR
A
,_dz' _D; (5.15)
U, =—=3Y,
t' h?

16
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Then the new form of the Laplacian as follows:
|:||2:h2|:|2 . (516)

The next step is to put these variables into the Navier-Stokes equation and then

. h3
myltiply through b :
yiuply g vaT

1 2 [ 3
Dy | ov, +0grad'v', |=- h™ dp", adrgh g+0% v,
v | ot vD; p, 02' VD;
ey W2 oo (5.17)
—T{Aﬂj@rad'u'x} =- 9P e U,
v | ot VD; p, OX'

Now some of the dimensionless ratios can be replaced with well-known
parameters.

Prandtl number o:

o= é (5.18)
Rayleigh number R :
R= agh’ or . (5.19)
I/DT
And the last parameter — a dimensionless pressure variable /7 :
M= ngh;o (5.20)

17
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Now the final form of Navier-Stokes and thermal diffusion equations is as falows:

119Y% , igradv, | =~ +Re+ 070,
o| ot 0z

(5.21)

X

1199, +0'lgradv', :_6_ﬂ+D,2 U
o| ot oXx

%—f +0J'gradé-v', =08

Since now primes will not be written but it's important to remember that they

are still there.

18
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5.2. The streamfunction representation of equations

The Streamfunction is the kind of expression which includes the information
about all fluid particles motion. The velocity of the fluid flow consists of two

components which are the partial derivatives of the streamfunction:

__0¥(x,z,t)
< 0z
_0¥(x,zt) (5.22)
‘ ox
The thermal diffusion equation expressed in terms of the streamfunction:
06 _ow o6 6‘# 08 _o¥ _
=0°8 . :
o oz ax X 0z ox (.23)
The fluid flow equations:
aw awaw awaw _on RH+D2W
o|oox 9z ox> ax 0z0x 9z 0x
(5.24)
1] oW, owolw owo'w | om ., ov
o| 0tdz 0z 0z0x 0X 0z0X 0z 0z
Combining these two equations together gives the following result:
g{i(mzw)_i{a_wz_w_a_wz_w}_i{a_ww _0_‘”2‘“H
2 2
0z | 0z 0x0z 0X 0z 0x | 0z 0x 0X 0z0x (5.25)
=R 96 +0'Y
0x

19
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Although the pressure term is no longer used, the equation is a complete description
of fluid flow.

20
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5.3. Fourier expansion of the streamfunction

In order to solve such partial differential equations, Fourier expansion will be
used. According to Fourier's Theorem, every periodic function may be expressed as
a sum of a constant term and a series of sine and cosine terms. All the frequencies
which are associated with these sines and cosines are integer harmonics of the
fundamental frequency. Consequently the solution of the partial differential equation
is a product of functions each of which depends on only one of the independent
variables (x,z,t). By applying the orthogonalization procedure, the solution is

expected to be of the following form [1]:

w(x,y,z) =
= e“"{A, cos(},z) +B,, sin(A,2)} x{C, cos(1,2) + D, sin(4,2)} : (5.26)

where As are the wavelengths of the various Fourier spatial mode and «s are the
corresponding frequencies. Such a series may be also expressed as an infinite set
of equations. And then the Galerkin technique is used in order to obtain a finite set

of equations.

21
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5.4. Boundary Conditions

The boundary conditions for the temperature are as follows:

(5.27)

It is so because of the fact that the temperature at the top and the bottom is fixed.

Boundary conditions for the streamfunction - let the shear forces at the top and at

the bottom be neglected:

v

z=0 - 3 =0
aUZ . (5.28)
z=1 - ~=0
0z
The following expressions satisfy assumed conditions:
W(x,z,t) =(t)sin(rz)sin(ax
(x,z,t) = ¢(t)sin(7z)sin(ax) (5.29)

8(x,z,t) =T,(t)sin(7z)cos(ax) - T,(t)sin(27z) '’

where the parametera is to be determined.

The function ¥ is this part of model which is responsible for arising convective
rolls which can be observed in real experiment. The second equation is the
temperature deviation function which consists of two parts. The former part
T,describes the temperature difference between the upward and downward moving
parts of a convective cell, while the latter is the description of the deviation from the
linear temperature variation in the centre of a convective cell as a as a function of

vertical position z.

22
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5.5. The Lorenz model of convection

By substituting the assumed form into the (egs. 6.23 and 6.25), equations for

streamfunction and temperature deviation there are many terms which simplify and

disappear:

O*W =—(@% + )W
D'W=(@%+m)*W

_%(a2 + 1) sin(7z) sin(ax) =

- oRT,(t)sin(7z)sin(ax) + a(a’ + 1°)? ¢(t) sin(7z) sin(ax) |

(5.30)

The previous equation is true for all values of x and z only if the coefficients of the

sine terms satisfy the following equation:

dy(t) _ oR
dt T+

T,() - o +at ) .
a

The form of the temperature deviation equation looks as follows:

T, sin(7z)cos(ax) —T, sin(27z) + (77 +a*)T, sin(7z)cos(ax)
— 417°T, sin(27z) —ay sin(7z) cos(ax)
= —[mp cos(rz)sin(ax)][aT, sin(7z) sin(ax)]
—[ag sin(7z)cos(ax)][ 7T, cos(7z)cos(ax)]
+[¢ sin(7z)cos(ax)][27T, cos(27z)]

(5.31)

(5.32)

23
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Next coefficients T,,T, are found:

T, =ay - (7 +a*)T, - myT,

T, = %zpﬂ —A7°T (5.33)

Finally some new variables will be introduced in order to simplify the notation, the

first of them is new time variable:
t'=(r +a’)t' . (5.34)

Using this variable and neglecting again primes, the following expressions are set:

_ ar
X0= im0
Y(t):%mt)
Z(t) = 71T, (t) . (5.35)
r_—(a2+n2)3R
b=
a“ +7

Having all these parameters defined the Lorenz model can be written in the following
form [2]:

X =a(Y - X)
Y =rX -XZ-Y . (5.36)
Z=XY -bz

24
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Finally it's important to notice that the truncation of the sine-cosine which was

made causes that the Lorenz model concerns only one spatial mode in the x

. . . 2 . . .
direction with wavelength—n. If the spatial structure of the fluid flow is much more
a

complex or the difference of temperature between top and bottom is too large the

Lorenz model is no longer the appropriate description of the fluid dynamics.

25
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Chapter 6: Computer simulation

The simulation of the convection was prepared using Wolfram Research
software - Mathematica. This program is one of the most famous symbolic algebra
systems and it is a fully integrated environment for technical computing. The
simulation is based on the solution of the system of three ordinary differential
equations known as the Lorenz system (5.36). In order to present to the convection
phenomena there were maps of temperature generated for certain values of
parameters i.e. Rayleigh number, Prandtl number etc. The oscillation and chaotic
behaviour are presented using streamfunction spectra plots, the plots of attractors in
the phase space and the velocity gradient fields. Finally there was carried out
a simulation which shows how important is the precision of the numerical calculation,
so that other plots of streamfunction were generated which show the comparison of

results obtained with two different working precisions.

26
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6.1. Oscillatory motion

Oscillatory motion is the transitional state of fluid which occurs when the
temperature perturbation arises. The particles of fluid begin to move and the
behaviour of the fluid seems as if it was convective. Yet the disturbances decrease
in a short time and the state of fluid became stable. The simulation was made for the
reduced Rayleigh number Rc=18

=

n

ol
J’Munrn;u.mw

Fig 6.1: The streamfunction plot in the Fig 6.2: The plot of the attractor in the
domain of time. The amplitude of phase space

oscillations are damping.
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The changes of temperature distribution in the fluid layer are presented
below. It starts when the pocket of fluid of higher temperature appears and arises.
Next the pocket goes up, spreads and than comes back to the previous state. The

process consists of several cycles and after that the fluid becomes stable.

a a5 1 1.5 Z .5 a a5 1 1.5 Z .5

(@) The pocket of the fluid of higher (b) The pocket arises.

temperature appears

0 0.5 1 1.5 4 2.5 0 0.5 1 1.5 4 2.5

(c) The particles of the fluid of higher (d) The fluid is coming back to the

temperature are spreading a little previous state.

Fig 6.3: The sequence of the temperature maps.
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6.2. Chaotic behaviour of fluid

The chaotic behaviour of the fluid motion occurs when the reduced Rayleigh
number is Rc>24.5, the simulation was made for the reduced Rayleigh number is
Rc=28. The result of using the Lorenz model of convection is the characteristic

strange attractor which is presented below:

10/

”élﬂnt.uml"“' “]'JJMJEH U Uw || ‘

an

Fig. 6.4: The streamfunction plot in the Fig. 6.5. The plot of the strange attractor
domain of time. The oscillation increases in the phase space.
and the system become non-periodic

and consequently chaotic.
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Changes of the direction of the gradient of velocity are illustrated below with

the plots of the velocity vector fields.

Il - - — - > z - — —_—— - |
Vs - = X \ / >3 - =~
S \ | /T = >
P/ ’:.. . i ]j i J i <> .\\ A
1Ly ! I ooy I ! v
I « ) b Y 1
1 | S - ” { I s -\_ " -~ | I |
I ";\ = R o A - ‘_;’ } |
- -— - - S— -
:. -— = = - | - - - — .4

- - - .._.._._I_._.._.. - - -
A el s —
pal - =~ = - RS
s gl N B i
I ! I ~ ~, s - | | i
. \ P AT B S 1 / i
TR P ! | 1 . <
~ R ! | \ - -
N - # ~ - T
|~ - - = y \ i - |
j ———— - - - -~ - . —_—
- - oy -

Fig. 6.7: The plot of the velocity vector field at the dimensionless time t=14.3
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The sequence of the temperature maps was made in the range of the

dimensionless time which contains the values used in the plot of the vector filed. The

beginning of the process resembles the previous oscillatory motion but after that it's

completely different. The state of the fluid doesn't tend to stability but it become non-

periodic and the fluid motion switch the direction from one to another. This chaotic

behaviour is presented below:
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0 0.5 1 1.5 4 2.5 0 0.5 1 1.5 4 2.5

(e) t=14.3 (f) t=14.6

1 1

0 0.5 1 1.5 4 2.5 0 0.5 1 1.5 4 2.5

(0) t=14.7 (d) t=14.8

Fig 6.8: the sequence of the temperature maps.
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6.3. Numerical accuracy analysis

Nowadays computer simulation is very useful and powerful tool used
commonly in a range of researches. Although it is hard to overrate its meaning it is
very important to remember that nothing is perfect. Computer is limited by its
construction which constrains simulations. Generally the most of calculation are
done with the precision which is less or equal to the processor precision. It is
impossible to obtain results with a freely high precision so every solution involves an
inaccuracy. The second reason why the results are not sufficiently precise is that
computer program must usually iterate the same operation for many times with a
certain step. In order to increase the accuracy one must decrease the step of
iteration so the time of calculation is longer. On the other hand there are many
situations in which decreasing the step of iteration below the certain value is
pointless because it doesn't change the result much.

Analysis of the chaotic system however is very difficult because of its
sensitivity. Consequently every small change in calculation can be the reason of
different results. In order to check the influence of the precision of numerical
calculation, there were two solutions obtained and they turned out to be different to
each other.
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The expected difference in results, obtained by solving the problem with two
different working precisions, is presented below. The blue line represents the
streamfunction which was solved with machine precision whereas the red one is the
plot of the solution of higher - 40-digit precision calculation. Although at the
beginning both plots are the same, they start to diverge at the dimensionless time

ca. t=23.

1
-3p

Fig 6.9: The plot of streamfunction solved using different precision.
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6.4. CFD program simulation

The Computer Fluid Dynamics program was used in order to create another
simulation of convection. Air properties were introduced as an input values, the
temperature was set as before:16°C at the bottom and 6°C at the top of the fluid

layer. The result of the simulation are is follows:

* e win Lt b o ™
i - ] 1w .

(a) The beginning of the convection (b)Fluid pockets arises

LR hat (8] (3] i [ %] e ikF aw =1 foa8

(c) The fluid of greater temperature is (d) Convective rolls appear.
spreading.
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(e) Convective rolls. () The temperature map and the
velocity vector field.

Fig. 6.10 The sequence of the temperature maps.
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Chapter 7: Pattern formation

The Rayleigh-Bénard system evolution is strictly dependent on the
temperature difference across the fluid layer. Considering the evolution of the
system such as the nondimensional temperature difference is increasing the
convection phenomena occurs at some threshold Rayleigh number. There is no fluid
flow below this certain value and the heat is transmitted only by conduction through
the fluid. With respect to the horizontal walls and having neither special initial
conditions nor any variations of the viscosity, the first spatial pattern is found to be a
stationary system of parallel rolls. The velocity field of roll convection is nearly two

dimensional aside from some usual irregularities or pattern defects.

Although the disturbances which occur at the onset of the convection are
described by a particular wave number, the pattern of the convection roll is
completely unspecified. It is the result of the fact that a given wave vector can be
resolved into two orthogonal components in infinitely many ways. In addition to this,
the waves corresponding to different resolutions can be superposed with arbitrary
amplitudes and phases. If the space is homogeneous so that there are neither
directions nor point preferred in the horizontal plane the entire layer is divided into a

mesh of regular polygons with the symmetry planes which are a cell walls [7].

During the experiments two types of pattern are usually observed:
1. Two dimensional rolls which occur when all the quantities depend on only one on
the horizontal direction. Then the cells are infinitely elongated so that they can be
called rolls instead of cells.

2. Hexagonal cells — they occur when the system is the superposition of three roll

sets with wavevectors having the same modulus and direct angle of 2?77 to one

another. There are two variants of this type of cells: I-cells and g-cells and they
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are determined by the sign of velocity as a result of increasing or decreasing fluid
in the centre of the cell. Mainly g-cells appear in gasses (that is the reason why
the name is g-cell) and the I-cells can be observed in liquids (so the name is |-

cells).
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Fig 7.1: Schematic diagram of convection cells (a) two-dimensional rolls. (b)

Hexagonal |- and g-cells.
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Chapter 8: Conclusions

The results of the simulation show the different kind of behaviour of the fluid
flow. The Lorenz model of convection provides both the oscillatory fluid motion of
damped amplitude which tends to the stable state, and the non-periodical chaotic
fluid behaviour. On the other hand the simulation of convection phenomena were
presented using the fluid dynamics software. These results are similar to the
previous results, which is a good sign that the Lorenz model can be used as
a description of convection when the quite simple example is considered. The
Lorenz model is only appropriate for the small Rayleigh numbers when the
temperature difference is small enough.

The results of the simulation proved that the precision of the numerical
calculation have the significant influence on the solution accuracy and reliability. It is
essential part of analysis of chaotic systems.

The Rayleigh-Bénard convection is also an example of self-organization
which is a very interesting feature of some chaotic systems. The phenomenon is
based on the fact that the system which is far from the equilibrium state manifests

highly ordered structure.
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Appendix A - Program listing

(* Including necessary Mathematica's packages *)

<<Graphics PlotField
<<Graphics Animation’
<<Graphics'Legend"

(* Defining parameters of the equations system *)

(* length *)
L =Sqrt[2];

(* height *)
h =1;

(* wavelength *)
a=n/L;

(* Prandtl number *)
o0=10;

(* Reduced Rayleigh number *)
r=28,

(* geometrical ratio *)
b=4* 7x"\2/(a”2+ #"2);

(* temperature at the top *)
Tc=6;

(* temperature at the bottom *)
Tw=16;

(* temperatur difference *)
6T=Tw-Tc;

(* the end of time range *)
endTime=50;

(* the parameters of transformation *)
coeffl=((@"2+  s"2)*Sqrt[2])/(a* 7);
coeff2=Sqrt[2]/(r* 7);

coeff3=1/(  x*r);

(* Solving the set of ordinary differential equatio
will be done with the machine numbers*)
solution=NDSolve[{

X[t] =o*(y[t]-X[t]),

Y[t =rx[t]-x[t] z[t]-y[t],

ZTt]  =x[t] y[t]-b* z[1],

ns, all the computation
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X[0] ==z[0] ==1,
y[0] ==0},
{x.y.z},

{t,0,endTime},

MaxSteps -Infinity,

WorkingPrecision -MachinePrecision
I;
(* this solution will be done with 40-digit presici
solution2=NDSolve[{

X[t]  =o*(y[t]-X[t]),

YT =rx[t-x[t] z[t]-y(t],

ZTt]  =X[t] y[t]-b* z[t],

x[0] ==z[0] ==1,

y[0] ==0},

{x.y.z},

{t,0,endTime},

MaxSteps -Infinity,

WorkingPrecision -40

I

(*Defining the function to solve the streamfunction
Psijwx_,wz_,t ]:=
(coeff1*x[t])/.solution)*Sin[

(*Defining the function to solve the temperature de

Dev[wx_,wz_,t ]:=
STA1*((coeff2*y[t]/.solution)*Sin[

(coeff3*z[t])/.solution)*Sin[2* *wz));

(*Defining the function to solve the temperature de
precision*)

Dev2[wx_,wz_,t |:= ST 1*((coeff2*y][t]/.solution2)*Sin[
(coeff3*z[t])/.solution2)*Sin[2* *wz]);

(*Defining the function to solve the temperature *)
Theta[wx_,wz_,t ]:=
Dev[wx,wz,t]+Tw-wz/h* ST,

(*Defining the function to solve the temperature w
Theta2[wx_,wz_,t _]:=
Dev2[wx,wz,t]+Tw-wz/h* oT;

(*Defining the function to solve the x-component of
VX[wx_,wz_,t ]:=
Module[{wwx,wwz,tt,res},
res=-D[Psi[wwx,wwz,tt],wwx];
res=res/.{wwx -SWX,WWZ -WZz,tt  -t};
Return[res];

s*wz]*Sin[a*wx];

s*wz]*Cos[a*wx]-

on*)

%)

viation *)

viation with higher

s*wz]*Cos[a*wx]-

ith higher precision*)

velocity vector *)
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]

(*Defining the function to solve the z-component of velocity vector *)
Vz[wx_,wz_t |:=
Module[{wwx,wwz,tt,res},
res=D[Psi[wwx,wwz,tt],wwz];
res=res/.{wwx -SWX,WWZ -W2Z,it  -t};
Return[res];

]

(* Plotting the attractor *)
ParametricPlot3D[
Evaluate[{x[t],y[t],z[t]}/.sol],
{t,0,50},
PlotPoints -5000,
Boxed -False,
Axes -False,
ImageSize -{500,530}
]

(* Plotting the stramfunction®*)
Plot[
Psi[L/2,3/4,s],
{s,0,30},
ImageSize -{300,250},
PlotPoints -5000,
PlotRange -{-30,30},
AxesLabel -{"t"" y¢"}
]

(* Plotting temperature map *)
TemperaturePlots={}
Do[
AppendTo[
TemperaturePlots,
ShowLegend][
DensityPlot[
Theta]wx,wz,s][[1]],
{wx,0,2*L},
{wz,0,1},
ColorFunction -(RGBColor[#,1-#,1-#]&),
Mesh -False,PlotPoints -100,
DisplayFunction -ldentity,
ImageSize -{280,280}

1,

{RGBColor[#,1-#,1-#]&,25,
ToString[Tc],

ToString[Tw],

LegendPosition -{1.1,-.8},
LegendSize -{0.3,1.7}}

1,
]

{s,16,18,0.1}
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(* Plotting the velocity vector field *)

PlotVectorField[
{Vz[wx,wz,14.1][[1]],VX[wx,wz,14.1][[1]]},
{wx,0,2 L},

{wz,0,1},

AspectRatio -0.3,
HeadlLength -0.02,
HeadCenter -1,

HeadWidth -0.2,
ScaleFunction -(0.003#&),
ScaleFactor -None

43


tomek
Podświetlony


) Computer simulation of thermal convection in Rayleigh-Bénard cell

Appendix B - fluid properties

The tables which are presented below contain some standard values that are
used in describing fluids. These properties are necessary to describe fluid flow and
they are used to determine the values of some dimensionless numbers. There were
two of such numbers determined (assuming that the height of the fluid layer is 1m
and the temperature difference between top and bottom is 16 °C): Rayleigh number,
Prandtl number.

Properties of air at 20°C :

Property Value Units
Density 1.2047 kg
m
. . kg
Dynamic viscosity 1.8205E-5 mis
m2
Kinematic viscosity 1.5111E-5 —
S
m2
Thermal diffusion coefficient 2.1117E-5 —
S
Thermal expansion coefficient | 3.4112E-3 1
K
Prandtl number 0.71559
Rayleigh number 1.0487E+6
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Properties of water at 20°C :

Property Value Units
Density 1.2047 k9
m
. . kg
Dynamic viscosity 9.7720E-4 —
m (s
. . . m?
Kinematic viscosity 9.7937E-7 —
S
m2
Thermal diffusion coefficient | 1.4868E-7 —_—
S
Thermal expansion 1
3.4112E-3 -
coefficient K
Prandtl number 6.5870
Rayleigh number 2.29814E+9
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